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With the help of a theory which is based on functional integrals, we calculate the evolution, with 
temperature and degree of polymerization, of the orientational order parameter of thermotropic nematic 
polymers under a magnetic field. We compare our results with those obtained experimentally from magnetic 
birefringence measurements on polyesters. The validity of the application of the mean-field theory in the 
case of semiflexible liquid crystal polymers which consist of sequences of mesogenic units and flexible 
spacers is also discussed. Copyright © 1996 Elsevier Science Ltd. 
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I N T R O D U C T I O N  

Semirigid polymers, in solution or in the melt, have 
received much attention through experimental 1 9 and 
theoretical 1°-2° work in recent years. The study of the 
nemat ic- isotropic  transition has been one of  the most  
important  goals. Although the influence of external fields 
has been studied theoretically for rigid-rod macromole-  
cules, as, for example, in the case of  elongational 
flow 21-23, some theoretical work has already been 
devoted to investigations on semirigid polymers 13,24 26. 

As the temperature of  the nematic- isotropic  transition 
is reached, a number  of  physical properties exhibit 
divergences. Such pretransitional effects are shown 
by measurements of  the intensity of  the scattered 
light and of the electric- and magnetic-field-induced 
birefringenceZ7-30. 

This paper  deals with the influence of  a magnetic field 
on the phase transition of a semi-rigid polymer, which is 
described here through the use of  the elastic worm-like 
chain model, as previously reported 14. We also give some 
comments  and observations on the experimental work 
carried out on the magnetic birefringence of  various 
polyesters. 

T H E O R Y  

The polymer is described as a worm-like chain, with a 
continuous space curve of  contour length L and a 
bending elastic constant ~. The chain stiffness is also 
defined by its persistence length, i.e. q = ~ / k T .  All 

* To whom correspondence should be addressed 

lengths are given in monomer  units, so that L is equal to 
the degree of polymerization. Here we only consider the 
elastic intramolecular interactions between neighbouring 
segments. The elastic energy associated with the chain is 
given by the following3J: 

I~ fL f o r \  2 

= jo ) (l/ 
with r being the tangent to the curve at a contour 
distance s from the origin of  the chain (Figure 1), where 
Irl-- 1. 

The segments of  the different chains themselves 
interact with each other, due to steric constraints and 
dispersion forces. Orientation-dependent interactions, 
due to the cylindrical symmetry of the polymer segments, 
are assumed to be predominant.  The local orientation of 
a polymer segment (the orientation o f t  at s) with respect 
to the nematic axis (which is taken as the z-axis) is O(s) 
(Figure 1). These interactions can induce the appearance 
of nematic order, and the order parameter  per segment is 
then defined as follows: 

) S = Z d s P 2 [ c o s  0(s)]  (2) 

with ( ) being the thermodynamic average over all the 
chain conformations,  and P2[cos 0(s)] the usual second- 
order Legendre polynomial,  i.e. 1/213 cos 20(s) - 1]. 

The potential, at point s, due to the intermolecular 
interactions, is then given as follows: 

V( S ) = - - u g  P 2 [cos  0(s)3 (3) 

where u, the effective strength of the average orienta- 
tional intersegement interaction, represents an average 
over the intermolecular distance. 
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Figure 1 Conformat ion of a worm-like polymer chain 

Next, we consider a magnetic field H, applied along 
the z-direction. A polymer segment will experience a 
torque, due to its magnetic anisotropy AX(= XII - X_), 
with XII and X± being respectively the magnetic suscept- 
ibility, parallel and perpendicular to the backbone of the 
polymer. This torque tends to align the segments parallel 
to the magnetic field when A X is positive or perpendi- 
cular to the field when it is negative. For  simplicity, we 
only consider positive values of  A X, i.e. the case, for 
example, of polymers containing benzene rings in the 
polymer chains, such as certain polyesters 32. 

Therefore, the nematic axis, for a uniform phase, is 
parallel to H. This external field introduces an increase in 
the potential at point s, which is given by the following 
expression: 

1 AxP2 [cos O(s)IH 2 - 1 ~H 2 (4) 

where 2 (=  (2X± +XII)/3) is the average magnetic sus- 
ceptibility 33, when H = 0. Let us take Ve = I / 3 A xH 2, so 
that the orientation-dependent part of the potential due to 
the field H is ve(s ) =-%P2[cosO(s)]. Then, the total 
orientational energy for a polymer chain is given by the 
following: 

f" ds[v(s) + re(S)]. 

Up until now, we have only considered a thermotropic 
polymer, in the melt. In the case o fa  lyotropic polymer in 
solution in an ideal solvent of spherical molecules, 
without any polymer-solvent  interactions, all of  the 
above remains valid if we replace u by uX, with X being 
the volume fraction of the polymer (keeping in mind, as 
mentioned above, that u represents an average for the 
intermolecular distances). Mixtures with interacting 
solvents (e.g. liquid crystals) have been treated in other 
publications 29,34. 

CALCULATIONS 

In order to obtain the orientational order of the polymer 
chain in the presence of  a magnetic field, we need to 
calculate thermodynamic averages for the polymer 
chain 14. The expression for the Boltzmann factor 
associated with a polymer conformation is as follows: 

exp{-fl [~ J;; ds(~)2+ It; ds(v(s)- (v(f)~ + Ve(S))] } 
($) 

with (v ( s ) )= -uS2 ,v~ ( s )  is the contribution of the 
external field, and f l =  1/~BT (~B is the Boltzman 
constant). We introduce the statistical weight, G(r, r ~, L), 

which measures the probability of finding a polymer, 
with a given conformation and an orientation r at 
contour length s = 0, and r '  at s = L, which is given as 
follows: 

G(r, r 'L)  = [ d{conf}6[r(O) - r]6[r(L) - r ' ] 

[~ ~L /Or \  2 
 exp - L Jo 

Thus, we can calculate the orientational order parameter 
through the following self-consistent equation: 

1 j.L 
ds S = • 0  

# f /  ! #1 ' × drdr  dr G(r ,r  ,s)P2[cosO(s)]G (r , g , L  - -  S) 

(7) 
with Z = J'drdr~G(r,r ~, L) being the partition function 
of  the polymer. 

As mentioned before 14, G(r, r', L) is the solution of a 
differential equation, namely the following: 

[OL 2fl t ;1Ar '+fl(v(s)  (v(s)) ~-Ve(S))J 

= 6[r(0) - r'}6(L) (8) 
and the problem is thus reduced to the calculation of 
eigenvalues and eigenvectors of a matrix system which 
was chosen to be of the order seven, so as to obtain 
sufficient precision. 

Let ve~(= Ve/U) be the relative strength of the external 
field with regard to the intermolecular interactions. For  
each value o f % ,  we calculate, self consistently, the value 
of S for various temperatures. The system has almost 
always one solution: for rather low temperatures, S > 0 
corresponds to the nematic phase, for high temperatures, 
S is very small but different from zero, and for the 
intermediate range of temperatures, these two solutions 
may co-exist with another one which corresponds to a 
maximum of the free energy. 

For  sufficiently small Ve~ value, a first-order transition 
from a very low ordered phase to a higher ordered 
nematic one exists at a temperature T c (Figure 2). We 
only calculate here a 'pseudo-transition' temperature 35 
where the free energies are equal in the two phases and 
we neglect the biphasic domain. At the transition, the 
orientational order parameter jumps from a value Sq to a 
value Sen- 

For  a critical value Vec of the external field, Sq and S~ 
merge in a single solution, the transition is no more first- 
order in nature, and for greater values there is no longer 
a transition, with the order parameter exhibiting a 
smooth and increasing behaviour when the temperature 
is lowered (Figure 2). The corresponding V~r~(= vo~/u) 
value seems to be always ca. 10 2. 

A plot of the transition temperature versus the external 
field shows a linear variation (Figure 3), with a Tc 
maximum deviation from T~(vo = 0) of some tens of 
degrees at 't,¢~ (typically -,~ 20 K). Thus the external field 
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Figure 2 Influence of the external field v~ on the temperature 
variation of the order parameter S, obtained by the direct calculus 
method, with L = 20, q = 10 and Tc(% = 0) = 330 K: ( -)  0; ( . . . .  ) 
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Figure 3 Variation of the nematic-isotropic transition temperature T c 
with the external field Ve~, from the direct calculus method; the polymer 
parameters are L - 20 and q = 10 

induces  some o rde r  in the i so t rop ic  phase  and  moves  the 
t r ans i t ion  po in t  t owards  h igher  tempera tures .  W e  note  
tha t  for  Ve <Vec, the greater  v e is, then the lower  is Sen 
and  the greater  is Sci , unti l  v e = Vec where  So, = Sq 
S~(% = 0 ) /2  (Figure 4). 

Calcu la t ions  can also be done  by using a L a n d a u - d e  
Gennes - type  expans ion  o f  the free energy,  as follows25'26: 

/XF~ = F e ( S )  - Fe(O) 

=-- E S  + A ( T  - T * ) S  2 - B S  3 + C S  4 (9) 

The  coefficients E , A , B  and  C are  dependen t  on the 
externa l  field, while E,  B and  C, moreover ,  are  also 
t e m p e r a t u r e  dependen t .  They  are  de t e rmined  by an 
expans ion  o f  the pa r t i t i on  func t ion  given in the case o f  
the prev ious  calculus  me thod .  Thus ,  all o f  the expres-  
s ions ob t a ined  prev ious ly  for  an  e longa t iona l  flow are 
der ived  in this present  s tudy,  in the same manner ,  for  a 
magne t i c  field. 

0.4 

S c 0.2 -_ 

o 

Vet = VJU 

Figure 4 Variation of the order parameters at the transition, in the 
isotropic (Sci, R) and anisotropic (Sen, V) phases, as a function of vet; 
the parameters of the chain are the same as in Figure 2 

W e  shall call  this type  o f  a p p r o a c h  the L D G  ( L a n d a u -  
de Gennes)  me thod ,  and  the first a p p r o a c h  the direct  
calculus  me thods  which,  as a result ,  can be app l ied  with 
an  e longa t iona l  flow. 

Both  me thods  give the same qual i ta t ive  results: a 
l inear  va r i a t ion  o f  the t r ans i t ion  t empera tu re  with the 
externa l  field, a cr i t ical  value o f  the external  field Vec, 
above  which no  t r ans i t ion  still occurs,  wi th  only a 
s m o o t h  va r i a t ion  o f  the o rde r  p a r a m e t e r  with the 
t empera tu re ,  and  for  % <Vec, a j u m p  o f  the order  
p a r a m e t e r  at  the t rans i t ion ,  f rom Sq to Sc., with Sq (Scn) 
being an  increas ing (decreasing)  funct ion  o f  v e. The 
direct  m e t h o d  gives good  prec is ion  but  needs qui te  long 
numer ica l  ca lcula t ions ,  while the L D G  m e t h o d  shows 
p o o r  prec is ion  but  uses s imple ana ly t ica l  expressions.  

In  bo th  me thods ,  we need three p o l y m e r  parameters .  
Two are c lear ly  character is t ics  o f  the chain,  namely  the 
degree o f  po lymer iza t ion ,  L, and  the persis tence length,  
q, es t imated ,  for  example ,  f rom intr insic  viscosi ty 
measu remen t s  36-38, while the th i rd  one m a y  be ei ther  
the t rans i t ion  t empe ra tu r e  wi thou t  an external  field 
To(re = 0) or  the effective s t rength  o f  the o r i en ta t iona l  
in te rac t ion  u. I f  one chooses,  as we have done,  the first 
one, i.e. Tc(v e = 0) (easily de te rmined  exper imenta l ly) ,  
the two me thods  do  no t  give the same value for u. 
A l t h o u g h  the difference is only  o f  the o rde r  o f  a few 
calor ies  per  mole ,  if  one takes  the value u ob ta ined  f rom 
one m e t h o d  and  uses it in the second me thod ,  this will 
in t roduce  a great  va r i a t ion  in Tc(v e ----0) ( ~  tens o f  
degrees).  

Let  us rewri te  the resul t ing express ions  o f  the L D G  
m e t h o d  as follows: 

T c = To(v e - - O )  1 + Sc(v e = 0  

Sci,n~lSc('Ue~O)[l ~z(1-f~)l/2]~z(1-(~)l/2(~ I ( l l )  

with 5 = ~)e/~)ec ~ 1. 
The  app l i ca t ion  o f  equa t ion  (10) to the da t a  ob ta ined  

with the direct  m e t h o d  shows very good  agreement ,  wi th  
the e r ror  being less than  10 -3 for  Ver _< 10 -3 and reaching 
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Figure 5 Shift o f  the t ransi t ion temperatures  T c and order  parameters  in the paranematic  phase So, (from the direct calculus method,  with the 
molecular  parameters  L =  14.6, q 1) as a funct ion of  the external field with various scales (~,er, H,E,G); u = 5 . 6 4 5 8 k c a l m o l  ], 
A x = 0.99 x 10-28 e r gG-2 ,  Ae = 10, f ~ 4 x 10 -8 gs  -I 

5 x 10 2 at around ~)er c (always below the practical 
experimental precision). Equations (11) are also good 
expressions for fitting the results of  the direct method, 
with an error of  ca. 5%. 

Therefore, the expressions given by the L D G  method 
seem to be good approximations for the direct calculus 
approach.  By keeping this in mind, both the L D G  and 
the direct calculus approaches will become complemen- 
tary methods in our investigations. We can, for example, 
obtain the interaction parameter  u and the order 
parameter  at the transition S~(ve = 0), without an 
external field, by using the direct method (with the 
procedure given in refs 25 and 26). This allows us to 
obtain a good estimation of the modifications introduced 
by the application of  an external field %, just with the 
help of  equations (10) and (11). A better precision can be 
reached via the direct calculations, if necessary. 

The maximum strength of the magnetic field which can 
be easily obtained for practical use is, at the present time, 
around 10T and leads to :Oer values of  ca. 10 6. Thus, by 
the use of  such fields, we cannot hope to reach the critical 
point Vec and the shift of  T c will be undetectable within 
the useful experimental precision. However, the applica- 
tion of such magnetic fields will induce an order 
parameter  of  :-, 10 -5 in the isotropic phase - - t he  so- 
called 'paranematic '  phase and we shall see later that 
these calculations will be of  some practical interest. 

The usual values obtained for the strain rate of  a flow 
field are 10 to 50 000 s I 13, so we can expect in the case of  
elongational flows, to have the strongest orientational 
effects. 

The same procedure as given above can be used with 
an electric field (when there is no electrical conduction) 
by using Ve = 1/3(Ae/47r)E 2, with A~ being the aniso- 
tropy of  the dielectric permittivity and E the strength of 
the electric field. Strong effects are also expected in this 
case. 

A typical plot of  the shift of  the transition temperature 
T c and of  the associated induced order parameter  Sg, in 
the paranematic phase, is shown in Figure 5, as a 
function of the external field, expressed on a multiscale 
axis (the relative external field veT, with the correspond- 
ing magnetic (H),  electric (E) and elongational flow (G) 
field strengths). We have taken the usual values of  
A X ~ 10-Temu cgsg I (refs 39 and 40), Ae--~ 10 (ref. 
41), and a friction coefficient in dilute solutions of  
--, 10 8 gs  I (ref. 21) (the estimations for concentrated 
solutions or pure melt polymers being very difficult). We 
can see that a magnetic field of  10 T is equivalent to an 
electric field of  10kVcm -1 (for a sample of  10~m 
thickness, under 10V) and to a strain rate of  100s 
Thus, it seems that electrical and elongational flow fields 
will be easier to handle for practical interest. A shift of  
ca. 1 K in the transition temperature and an orientational 
order parameter  of  ca. 10 3 in the paranematic phase 
will, theoretically, be obtained for H-- ,  225T, 
E ,-- 300 kV cm 1 and G --, 50 000 s 1. 

RESULTS A N D  DISCUSSION 

Magnetic birefingence experiments allow the estimation 
of the orientational order of  a nematic polymer in its 
paranematic phase, via the measurement of  the aniso- 
tropy of the refractive index, An = nil - n , with nil and 
n± being the refractive index for light electric polariza- 
tion, respectively, parallel and perpendicular to the 
nematic director n and H. The parameter  An is used to 
calculate the Cot ton-Mouton (CM)  constant from the 
following: 

An = CM,~H 2 (12) 

where :k is the wavelength of light. 
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Figure 6 Inf luence of  the external  field Uer on  the va r i a t ion  of  1 / S  wi th  
T, f rom the di rect  ca lculus  m e t h o d  wi th  the po lymer  pa rame te r s  
L = 20, and  q = l0  r 2 are the l inear  regress ion coefficients of  the curves  

A plot of  1/CM versus the temperature T shows a 
linear variation, as follows: 

1 
C M  -- A 2 ( T  -- T * )  ( 1 3 )  

and gives the so called T* temperature, at the intersection 
42 • on the T-axis by a linear extrapolation ; T corresponds 

to the limit of  metastability of the isotropic phase and A2 is 
related to the second virial coefficient. For liquid crystal 
molecules, it is well known that T* is just a few degrees 
below the isotropic-to-nematic phase transition tempera- 
ture T c while for nematic polymers, the difference 
(T  c - T* ) is greater and lies around 20-30 K 42 

We shall use some of the theoretical results obtained 
previously to try to understand this phenomenon.  It  is 
known that An can be related to the anisotropy of the 
dielectric susceptibility Ae, and we can write Ae = 
(ell - ~±) = (V~ll - x/7±)(V~ll + v/g±). As a first approxi- 
mation,  we can then rewrite ~ e  in the same way as that 
given for liquid crystal molecules 33, i.e. as Ae ~ 2An ~, 
with ~ being the average refractive index. In addition Ae 
can be related to the orientational order parameter  S, 
under the magnetic field, through Ae = p S. The quantity 
p is a phenomenological  parameter  depending on the 
molecular characteristics of  the monomer  (electric 
polarizability, etc.) and of the chain (density of  segments), 
which we will not describe here for reasons of simplicity, as 
it is of  no real use for our present purpose. 

Thus we have An ~ Ae /2~=pS/2~ ,  and using 
equation (12), we obtain the following: 

1 AH 2 1 
- - - - 2 h  - -  ( 1 4 )  

CM p S 

The order parameter  S, under a given magnetic field H 
(or vc), is thus proport ional  to the C o t t o n - M o u t o n  
constant. 

As a consequence, the theory has to give a linear 
variation of  1IS versus T over a wide range, which is 
found (Figure 6) for various values of  the external field 
%. So, following equation (13), we can write the 

30 

s S 

s S 

s S 

t I 
320 345 370 

T (°K) 

Figure 7 Shape of  the va r i a t ion  of  1IS with  T for Uer = 8.5 × 10 -3, 
wi th  the po lymer  pa rame te r s  used  in Figure 2 

following: 

1 
= ~ ( r -  r * )  (15) 

Thus, c~ is proport ional  to A2 as follows: 

1 p ( 1 6 )  
o~ = A 2 2AH2 h 

We see that the lower is v e, then the better is the linear fit. 
We also found (Figure 7) the same deviation near Tc and 
the same general shape that is found for the experimental 
curves of  1/CM as a function of  T, in both polymers and 
liquid crystal molecules 43 (the dotted line is only an 
approximation for both theory and experiment). We can 
then deduce T* from the plots of  1IS as a function of  T 
by a linear extrapolation, and a quite interesting 
observation can be made that, for polymers, (Tc - T*) 
is quite large and equal to ~ 35-40 K (so that (To - T* )/ 
Tc ~ 10-12%). 

We can now compare these last theoretical results with 
the experimental data obtained by Maret  42 for a series of  
aromatic  polyesters (with mesogenic groups and flexible 
spacers in the mainchain), known as DDA-9,  as well as 
for the two corresponding low molecular weight 
compounds PAA (para-azoxy-anisole) and 9-DDA-9 

30 (see Table 1), which have been described elsewhere . For  
each sample, the length L and the experimental transi- 
tion temperature are known. These values are reported in 
the first part  of  Table 1, together with the experimental 
results obtained by Maret  42 from magnetic birefringence 
measurements (with A = 6328 A). The maximum mag- 
netic field used was H = 12 T, so we have used a value of 
Ver of  10 6. The persistence length for such polyesters is 
nearly equal to 1. 

We have previously shown 44 that in the theoretical 
mean-field model (without an external field, VeT = 0), a 
knowledge of L and q determines, for each degree of 
polymerization, all of  the characteristics of  the 
isotropic nematic phase transition: the orientational 
order parameter  at the transition, Sc0, and the quantities 
t~B Tc/uL (or t~B/Tc/uq) and ~B T*/uL (or ~B T*/uq), etc. 
Therefore, f rom the experimental transition temperature 
Tc, we can determine the orientational interaction 
parameter  u, and then Sc0 (Table 1, second part). 

The same calculations are also true when an external 
field is applied to the sample. Thus we can determine 
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Figure 8 Influence of the degree of polymerization L, for various samples of DDA-9 (ref. 42) with q = 1 and Ver = 10 6, o n :  (a) the transition 
temperature To; (b) the interaction parameter  u; (c) the order parameters at  the transition, So. (anisotropic) ([5]) and So, (isotropic) (A); (d) the T* 
temperature, calculated ([5]) and experimental (0)  values; (e) the slope c~ of the curve 1 /S(T)  

theoretically, for an external magnetic field Ver(= 10-6), 
the related quantities Sco, Sc~, Tc and T*, and c~ (Table 1, 
third part). 

Calculations show, for all of  the L values of the 
various samples, that we have the following (equations 
(10) and (11)): 

T c ~'~ T c ( v  e = 0 ) ;  Scn ~ S c ( v  e = 0 )  ~ 0.35; 

S c ~ 8 x  10 6 ; ( T c _ T , ) ~ 3 5 _ 4 5 K  

We must give special attention to the value of the order 
parameter at the transition in the nematic phase, Sc,. The 
mean field theory gives ,,~ 0.35, while values of  ,,~ 0.70- 
0.88 have been deduced from nuclear magnetic reso- 

4 5 -  nance (n.m.r.) spectroscopic measurements . The agree- 
ment is rather poor, but this discrepancy could have 

several origins. The worm-like model is perhaps not able 
to correctly describe such a polyester, which has a rather 
discontinuous structure, i.e. a rigid mesogenic entity 
followed by a flexible one, and so on, and could, 
moreover, exhibit 'hairpins' (folding of the chain) for 
the longer chains 46,47. Steric repulsions, which may 

• 48 stabilize the liquid crystalhne phase , are not included 
in the present model. Furthermore, it was shown that the 
increase of order in the chain length is caused by an 
increase of  the biaxial character of the orientational 
order parameter 49'5°'52. In addition, due to sample 
polydispersity, a selective partitioning of chain lengths 
in the isotropic-nematic biphase occurs and leads to a 
heterogeneous molecular morphology in the pure 
nematic phase, with regions segregated both by chain 
length and level of orientated order 51. 
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Figure 9 Inflaence of the transition temperature T~ for the samples 
and parameters given in Figure 8, on: (a) the interaction parameter u; 
(b) the T* temperatures, calculated (Tq) and experimental (0)  values; (c) 
the slope ~ of the plot of 1/S 

We also note that there exists an incoherent point 
(L = 21.5) for the quantities Tc and as a consequence, for 
u, T*, and a. These were determined (as for all of  the 
samples) by using the experimental data with, certainly 
for that particular molecular weight, an overestimated 
value of the chain length (L should be ca. 7). On the other 
hand, S~, Sc, and S c i  , which were calculated only by using 
L (and q = 1) show continuous variations with L. 

Figure 8 illustrates the influence of the degree of  
polymerization L on various quantities, namely the 
experimental transition temperature Tc, the calculated 
effective strength of the orientational interaction u, 

deduced (for L~er = 0 )  with the help of  the mean-field 
approach,  the theoretical orientational order parameters 
(under a relative field Ver = 10 -6 ) Sc, and Sc~, the 
experimental and theoretical (as determined from the 
direct calculus method, by using the calculated u values) 
T* values, and finally, the theoretical values of c~ for the 
slopes of  the curves 1/S(T). 

The usual 53 strong increase of T~ at low values of  L, 
followed by a rapid saturation, is observed (screening 
effect). The experimental values of  T* are reported in 
Figure 8d. The theoretical T* temperature is lower than the 
experimental one, with quite a systematic deviation of ~ 10 
to 20 K; the variation with L is the same for both curves. 

All of  the curves of  Figures 8a, 8b, and 8d have the 
same shape (an increasing function of L, with a 
saturation plateau at high values of  L) while (~ in 
Figure 8e has a reversed evolution. This suggested a plot 
of  u, T* and (~ as a function of  T~, shown in Figures 9a-c. 
A fairly good linear dependence with Tc is found for T* 
and c~, with a better fit for the theoretical, when 
compared with the experimental T* values. The 
systematic deviation in T*, mentioned above, is clearly 
seen in Figure 9b. A linear variation of  u with T~ also 
appears for most of the points of  Figure 9a, although 
some points are clearly out of  alignment: u seems to be 
weakly dependent on L. 

It is found that S~,~ displays a smooth and increasing 
variation with L (Figure 8c), with its values falling in a 
short range of variation (0.34 < &, < 0.36), with no 
obvious sensible dependence on the fluctuations of  T~ 
with L (shown in Figure 8a), as mentioned above. 

Now it will be useful to know the theoretical 
predictions when a magnetic field is applied to small 
liquid crystal SMLC molecule. For  the reason previously 
developed 54, we can use the present model (in addition, 
another mean-field theory for liquid crystals 55) until the 
limit of conventional SMLC liquid crystals, with L = 1 
and q -+ :x> (for practical use, q ~ 1000). The application 
to PAA, with Tc(t,e = 0) = 404.7 K, L = 1 and q = 1000, 
leads to Sc~ = 9 . 9  × 10 6 and T = 367.59K, so that 
(T~ - T*) ~ 37K ((To - T*)/Tc ~ 10% ). 

The deviation between experiments and theory is here, 
for low molecular weight liquid crystals, greater than 
30K. Therefore, we are tempted to conclude that the 
mean-field approximation,  in the paranematic phase, 
seems to be a better approximation for nematic polymers 
than for small molecule liquid crystals. In the case of  
polymers, the dynamics of  the reorientational rearrange- 
ments is slower than for small molecules, due to the chain 
elasticity; thus, the fluctuations could not easily develop 
through the phase and hence relax more rapidly. In 
contrast, for liquid crystals, as has been pointed out by 
numerous authors 32,56, the transition is more of a 
second-order type, with the development of very-long- 
range correlations. 

C O N C L U S I O N S  

The first part  of this study complements our previous 
25 26 work on elongational flow ' . Two methods, namely 

the L D G  expansion and the direct calculus approach, 
can be applied in the case of  external fields, such as 
magnetic and elongational flow fields. 

We have also shown that despite the strength of 
experimentally accessible magnetic fields being too low 
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to induce any detectable shift of the transition tempera- 
ture, the external field induces a weak order in the 
isotropic phase which, in turn, leads to predictable 
experimental magnetic birefringence measurements. 

Another type of  external field, which is of  great 
technological interest, is the electric field. Therefore, 
numerous experimental reports on liquid crystals s7'58, 
and more recently on polymers 59'6°, have appeared in the 
literature. In the latter case, this present model can also 
be used, but it is necessary to take account of electrical 
conduction (essentially, for high fields), which will 
rapidly induce electrodynamic instabilities (convection, 
etc . )  60-64. 
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